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DD-PREF Language Experimental Questions
1. Can we express qualitatively different preferences?
2. Given preferences and a set of items, can we efficiently select a subset to satisfy the preferences?
3. Given user selections, can we capture (learn) their implicit preferences?

Conclusions

Blocksworld: Randomly generated 
blocks with four features: size, color, 
number of sides, and location (bin 
number). 

- Task 1: Create a mosaic.

- Task 2: Build a uniform tower.

- Task 3: Select blocks for a child.
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Goal: Allow users to specify feature-based preferences 
over sets of objects.

For feature  , a preference statement is a tuple:

Depth (    ): Desired values, in terms of their quality.
Diversity (             ): Desired "spread" of values.
Weight (             ): Relative importance of feature  .

    Objective function (minimize):

    for subset   , preferences   , and diversity weight   .

Pf = < qf , df , wf >

f

wf ∈ [0, 1]
df ∈ [0, 1]

f

Fdd(S,P, α) = (1 − α) depth(S,P) + α div(S,P)
S P α
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Generating Evaluating Preference
Preference Task 1 Task 2 Task 3

(mosaic) (tower) (child)

Task 1 0.9827 ± 0.0054 0.3054 ± 0.0306 0.9249 ± 0.0302
Task 2 0.7128 ± 0.0073 0.8654 ± 0.0175 0.6811 ± 0.0156
Task 3 0.8761 ± 0.0224 0.2646 ± 0.0212 0.9994 ± 0.0007
Random 0.7813 ± 0.0166 0.4051 ± 0.0382 0.8542 ± 0.0267

Table 1: Preference comparison across blocks world tasks, averaged over 20 trials (k = 14, n = 200,α = 0.5). Rows represent
different selected subsets; columns represent different preference evaluations.

other preferences. The first three rows represent the subsets
obtained when running Wrapper-Greedy with preferences
for Task 1 (mosaic), Task 2 (tower), and Task 3 (child). The
fourth row represents the subsets obtained by random selec-
tion. The columns give the average objective function for
the selected subsets, over 20 trials, when evaluated against
each of the three preferences. The best value for each col-
umn appears in boldface.

We find that the diagonal entries, where the generating
and evaluating preferences are identical, have the highest ob-
jective function values. This demonstrates that the Wrapper-
Greedy algorithm is doing a good job of tailoring the se-
lected subset to the specified preferences. In addition, the
preferences have significant impact: the subsets generated
according to other preferences do a poor job of satisfying
the evaluating preference. Further, we find that the block
subsets for one task, when measured by the other task prefer-
ences, are often worse than a randomly selected set of blocks
would be. For example, the subsets generated for Task 1,
when evaluated in the context of Task 2’s preference, yield
a worse objective function value (0.3054 on average) than
a randomly selected block subset (0.4051 on average). The
diagonal entries also have the smallest standard deviations—
that is, subsets selected for a given task have lower variabil-
ity with respect to that task’s preferences than do other sub-
sets. We conclude that preference specification can have a
large impact on the results, and specifying the right set of
preferences is critical.

Applying Preferences to Retrieve Larger Sets

The ability to encode and apply set-based preferences is par-
ticularly useful for large retrieval scenarios. For example,
a user may be willing to indicate preferences over a small
number of objects in exchange for getting back the top frac-
tion of objects from a much larger data set. We tested this
hypothesis by encoding user preferences for Mars rover im-
ages in DD-PREF and then applying them to retrieve a match-
ing subset from a larger group of images. We also explored
the impact of different values for the diversity weight, α.

We obtained a set of 100 grayscale images taken by a
Mars field test rover, on Earth. Each image is represented by
six features: the percent of the image composed of sky, rock,
rock layers, dark soil, light soil, and shadow. Figure 5(a)
shows one of the images and its feature values. For evalu-
ation purposes, each user identified, without examining the
image features, the best subset of 20 images, Stop20.

Inferring Preferences. First, we identified each user’s top
five ranked images, Stop5, from a separate task in which the
same users were asked to fully rank 25 randomly selected
images from the same set of 100 (Castaño et al. 2005). Our
goal was to see if preferences inferred from Stop5 could be
used to identify a subset similar to Stop20. We set the de-
sired diversity df to the diversity of Stop5. The quality func-
tion qf was defined as a soft constraint over the range of

values in Stop5 for feature f . Specifically, qf (xf
i ) = 1 if

xf
i ∈ [vf

min, vf
max] and (1−min(|vf

min−xf
i |, |xf

i −vf
max|)2)

otherwise. We set wf = 1.0 for all features. For example,
User 1’s preferences were:

Psky = < [33, 50], 0.94, 1.00 >
Prock = < [2, 16], 0.92, 1.00 >
Players = < [0, 2], 0.81, 1.00 >
Plightsoil = < [1, 6], 0.97, 1.00 >
Pdarksoil = < [35, 47], 0.99, 1.00 >
Pshadow = < [0, 1], 0.94, 1.00 >

In contrast, User 2 preferred images with less sky, more
rocks, and more light soil.

Methodology. For these experiments, we used the inferred
preference statements and the Wrapper-Greedy method to
select a subset of k = 20 items from the full data set of
n = 100 items. We evaluated the selected subsets in terms
of their overlap with the Stop20, varying alpha from 0 to 1 in
increments of 0.1. The overlap expected by random chance
is four images.

Discussion. Figures 5(b,c) show that Wrapper-Greedy
performed significantly better than random chance for each
user, despite their different preferences. The best result for
User 1 was obtained with a high diversity weight (α = 0.9).
Note that this result is better than a focus purely on depth
(α = 0.0, equivalent to a Top-K approach) or diversity
(α = 1.0). In contrast, the best result for User 2 was ob-
tained with a focus purely on depth.
We observe that although the mean overlap for each user’s

best results never exceeds 8 (of a possible 20), the objective
function values for these subsets are very high (0.999 in all
cases). We found that the true Stop20 was actually valued
lower (0.995 for User 1 and 0.994 for User 2), which sug-
gests that (a) the users may not have been consistent in their
selection of Stop5 and Stop20, and/or (b) the features cannot
adequately capture what the users value in the images. For
example, User 1’s preferences specify a range of 33-50%
for the sky feature, but in this user’s Stop20, the sky feature
ranges from 1-54%. Similarly, the desired (based on Stop5)

qf df wf

Problem Statement:

Need:
1. A language to express preferred (and non-preferred) relationships between items in a set
2. A method to select sets that satisfy the preferences
3. A method to infer preferences from user selections

Focus: Modeling preferences over sets of items.
Why set-based methods? 
   Ranking items independently cannot capture inter-object interactions.
 
   Example: selecting items for a meal:

Sub-additive utility 
(redundancy, incompatibility)

< ,,
Super-additive utility 
(complementarity)

,>

Algorithm: Identifying the Best Subset
(Wrapper-Greedy)

Given preferences   , a universe     of objects, a "seed" 
object   , and a diversity weight   , select    objects as a 
set.

Wrapper-Greedy: Iterate over all possible seed objects 
and select the best result (by objective function value).
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(a) Skew 0.00 (b) Skew 1.00 (c) Skew 0.21

Figure 1: Sets with different skew values.

ships among features in a graphical representation, but they
have not been applied to object sets.

Diversity. Diversity is a set-based property that captures
the degree to which values for a particular feature are
grouped close together (low diversity) or widely and evenly
dispersed across the range of values (high diversity). The
diversity measure that we define ranges from 0 to 1, where 0
corresponds to a preference for minimal diversity (all objects
have the same value for that feature) and 1 represents a max-
imal diversity preference (objects have values that are max-
imally distinct and spread evenly across the desired range).
We define diversity in terms of a complementary notion

we call skew.1 Skew quantifies the amount by which a set of
real values diverges from an even distribution of values over
the range. (Skew can also be defined for integer and cate-
gorical values, but we focus on real-valued features here.) A
low skew value means a very even distribution, correspond-
ing to high diversity; high skew corresponds to low diversity.
We calculate the skew σ(V ) of a list of k > 1 sorted val-

ues V =< vmin, . . . , vmax > as the normalized squared
loss function for a linear fit through vmin and vmax.
This loss function is normalized by the maximum possible
squared loss. Specifically,

σ(V ) =
∑k

i=1(vi − v′
i)2

M(V )
,

where v′i, the ith value in an evenly distributed list of k val-
ues bounded by vmin and vmax, is computed by:

v′
i = vmin + (vmax − vmin)

i − 1
k − 1

,

and M(V ), the maximum squared loss for a list with the
same vmin, vmax, and length as V , is:

M(V ) =
k−1∑
i=1

(v′
i − vmin)2. (1)

The maximum squared loss occurs when there are only two
distinct values (vmin and vmax) in the list, and the values are
distributed in a maximally uneven fashion. Without loss of
generality, we let there be one value at vmax and the rest (k−
1 values) at vmin, yielding Equation 1. By this definition,
skew is undefined for a list composed of only one distinct
value; for completeness, we set σ(V ) = 0 in this case.
Figure 1 shows three different sets of 11 values, all with

the same minimum (0) and maximum (10) values. The lin-
ear fit through 0 and 10 is shown by a solid line. Figure 1(a)

1We use this term for its intuitive meaning of bias or uneven-
ness, not in the statistical sense of skewness.

BASIC-GREEDY(P , U , s, k, α)
1. Initialize candidate set S with seed object {s}.
2. For j from 2 to k:

(a) Select the object x ∈ (U − S) that maximizes
Fdd(S

⋃{x},P, α).

(b) Set S = S
⋃{x}.

3. Return S.

Figure 2: Pseudocode for greedy subset selection.

matches this distribution exactly, and has a skew of 0.0. Fig-
ure 1(b) has ten values at 0 and one value at 10, so it is
maximally divergent from the constrained linear fit and has
a skew of 1.0. Figure 1(c) has all nine intermediate values
set to 5; the resulting skew is 0.21.
Since low skew corresponds to high diversity and vice

versa, we define the diversity of feature f over a candidate
subset S = {x1, . . . , xk} as 1 minus the skew of that fea-
ture’s values in S:

divf (S) = 1 − σ(sort(< vf
i |i = 1, . . . , k >)).

The actual diversity of a set is then the weighted average of
the diversity values for each feature:

actual-div(S) =
1∑
f wf

m∑
f=1

wfdivf (S).

To capture the degree to which a subset’s diversity matches
the desired diversity, df , we calculate the average squared
diversity error, weighted by the feature preferences:

div(S,P) =
1∑
f wf

m∑
f=1

wf (df − divf (S))2.

This measure of diversity will always be in the range [0, 1].
As with depth, because we measure the diversity of each

feature independently, DD-PREF cannot capture interactions
between features in the diversity measure. It is not clear that
such interactions arise in practice; in the domains we have
looked at, there are no obvious cases where inter-feature in-
teractions are important in modeling diversity. However, it
may be useful in the future to model such interactions.

Objective Function. We define an objective function
Fdd(S,P),α that assesses the value of a candidate subset
S, given a preference statement P . The objective function
includes a parameter α (referred to as the diversity weight),
which allows the user to emphasize the relative importance
of depth and diversity.

Fdd(S,P,α) = (1 − α) depth(S,P) + α div(S,P) (2)

Greedy Algorithm for Subset Selection

To evaluate the expressive power of DD-PREF, we imple-
mented a greedy algorithm for selecting a subset of k ob-
jects, given a preference statement P (see Figure 2). This
algorithm takes as input the preference P , the set of objects
U , the diversity weight α, and a “seed object” s ∈ U to serve

Mars Rover images: Collected during a 
field test on Earth and represented by six 
features: percent of the image classified as 
sky, rock, rock layers, light soil, dark soil, 
and shadow).

Users select top five of 25; the system then 
infers their preferences and applies them to 
a larger set of 100 to select their optimal top 
20.

One user's top five images and the resulting 
derived preferences:

as the starting point for the selected subset. This is necessary
because diversity cannot be evaluated over a set with only
one member. The greedy algorithm repeatedly adds the best
object (according to the DD-PREF objective function) to the
subset until the set includes k objects.
We observe that the greedy algorithm gives close to op-

timal performance in practice. However, it can be sensi-
tive to the seed object that is selected. Recall that for sin-
gleton sets, the diversity function always returns 0, so only
the depth value matters in the objective function. We de-
fine and analyze three variants with different seed selection
mechanisms. The Basic-Greedy algorithm simply chooses a
seed item randomly from the equivalence set of items in U
with maximal depth (i.e., with maximal weighted quality).
The Wrapper-Greedy method (which we use in our exper-
iments) invokes the greedy algorithm n times, trying each
seed object in turn, and then selects the subset with the over-
all best value for the objective function. Finally, LA-Greedy
(Lookahead-Greedy) searches exhaustively over all subsets
of size 2 to find the optimal such subset, and then uses this
subset to initialize the greedy algorithm.2

We compare our approach to three baselines: exhaustive
search, random selection, and the Top-K algorithm, which
selects the top k blocks independently, according to the
depth function only.

Complexity analysis. The big-O complexity of each of
the six algorithms is given in the following table, and is
briefly justified in the following text. (Due to space lim-
itations, the mathematical details are omitted.) The com-
plexity of calculating the depth or diversity of a set of k ob-
jects is O(mk); therefore, the objective function Fdd is also
O(mk). We assume that n >> k.

Algorithm Complexity

Basic-Greedy O(mk2n)
Wrapper-Greedy O(mk2n2)
LA-Greedy O(mkn2)
Exhaustive O(mknk)
Top-K O(mk2n)
Random O(k)

Basic greedy search evaluates n subsets of size 1, n − 1
subsets of size 2, . . . , and (n−k+1) subsets of size k, so it is

O(
∑k

i=1 m (n − i + 1) (i)). Wrapper greedy search applies
greedy search for each of n seed objects. Lookahead greedy
search exhaustively searches all subsets of size 2 (which is
O(C(n, 2) mk) = O(n2mk)), then uses those as the first
two seed objects and grows the rest of the set greedily. For
large n, the n2 term in the lookahead dominates the k2 term
in greedy search.
Exhaustive search evaluates C(n, k) (n choose k) sub-

sets. C(n, k) is O(nk) for n >> k. Top-K search computes
depth only (O(mk)) for n objects and maintains a sorted
list of length k with O(k) comparisons at each step. Ran-
dom search generates k random selections.

2Although we mention LA-Greedy and give its complexity
analysis, we did not evaluate this algorithm in the experiments pre-
sented in the paper. We plan to explore this method and other vari-
ants more thoroughly in future work.

Experimental Results

Encoding Qualitatively Different Preferences

To illustrate how DD-PREF can be used to model prefer-
ences for different types of tasks, we developed a simple
blocks-world data set, which includes three different tasks
with very different preferences. We show the results of ap-
plying five different algorithms to generate preferred subsets
from a collection of blocks: (1) the Basic-Greedy algorithm,
(2) the Wrapper-Greedy algorithm, (3) the Top-K algorithm,
(4) random subset selection, and (5) exhaustive search.

Blocks world data. Objects in the synthetic blocks do-
main have four attributes: size (a real value from 0 to 100),
color (represented as integers from 0–6), number-sides (an
integer value from 3 to 20), and bin (representing sequential
locations in a storage area; an integer from 0 to 100). We
have developed sample preference statements for three dis-
tinctly different tasks. Although these tasks (and the specific
values associated with each task) are artificial, they are intu-
itively reflective of the types of real-world preferences one
might wish to model in such a domain. The quality func-
tions qf are step functions, specified by the minimum and
maximum desired values.

Task 1: Construct a mosaic. This task requires various
block sizes—but all fairly small; with varied colors; and
many different shapes. Location is less important, but the
blocks should be close together if possible. Thus, we have
the following feature preferences < qf , df , wf >:

Psize = < [0, 25], 0.8, 1.0 >
Pcolor = < [0, 6], 0.75, 0.8 >
Pnumber−sides = < [3, 20], 1.0, 0.6 >
Pbin = < [0, 100], 0.1, 0.6 >
Task 2: Build a uniform tower. Here we want large,

similar-size, similar-color blocks, all the same shape and
with few sides. The location doesn’t matter (i.e., wbin = 0).

Psize = < [50, 100], 0.1, 1.0 >
Pcolor = < [0, 6], 0.0, 1.0 >
Pnumber−sides = < [4, 8], 0.0, 1.0 >
Task 3: Select blocks for a child. The blocks for this task

must be medium-sized for grasping, in many different colors
and shapes, and located close together.

Psize = < [10, 100], 1.0, 1.0 >
Pcolor = < [0, 6], 1.0, 0.8 >
Pnumber−sides = < [3, 20], 1.0, 0.8 >
Pbin = < [0, 100], 0.2, 0.4 >

Methodology. The same n blocks were used with all al-
gorithms, all values of k, and all preferences in a given trial.
The diversity weight α is set to 0.5 for all trials. The first set
of experiments (Figure 3) applied exhaustive search to small
problems to measure the true optimal value of the objective
function; we used this baseline to assess the performance of
the other four algorithms. In these experiments, n was set
to 50, and k was set to 2, 3, and 4. Exhaustive search is
impractical for larger problems, so we also ran a set of ex-
periments using only the first four methods (Basic-Greedy,
Wrapper-Greedy, Top-K, and Random) on 200 blocks, with
k = 5, 8, 11, and 14 (Figure 4).

qf df wf

as the starting point for the selected subset. This is necessary
because diversity cannot be evaluated over a set with only
one member. The greedy algorithm repeatedly adds the best
object (according to the DD-PREF objective function) to the
subset until the set includes k objects.
We observe that the greedy algorithm gives close to op-

timal performance in practice. However, it can be sensi-
tive to the seed object that is selected. Recall that for sin-
gleton sets, the diversity function always returns 0, so only
the depth value matters in the objective function. We de-
fine and analyze three variants with different seed selection
mechanisms. The Basic-Greedy algorithm simply chooses a
seed item randomly from the equivalence set of items in U
with maximal depth (i.e., with maximal weighted quality).
The Wrapper-Greedy method (which we use in our exper-
iments) invokes the greedy algorithm n times, trying each
seed object in turn, and then selects the subset with the over-
all best value for the objective function. Finally, LA-Greedy
(Lookahead-Greedy) searches exhaustively over all subsets
of size 2 to find the optimal such subset, and then uses this
subset to initialize the greedy algorithm.2

We compare our approach to three baselines: exhaustive
search, random selection, and the Top-K algorithm, which
selects the top k blocks independently, according to the
depth function only.

Complexity analysis. The big-O complexity of each of
the six algorithms is given in the following table, and is
briefly justified in the following text. (Due to space lim-
itations, the mathematical details are omitted.) The com-
plexity of calculating the depth or diversity of a set of k ob-
jects is O(mk); therefore, the objective function Fdd is also
O(mk). We assume that n >> k.

Algorithm Complexity

Basic-Greedy O(mk2n)
Wrapper-Greedy O(mk2n2)
LA-Greedy O(mkn2)
Exhaustive O(mknk)
Top-K O(mk2n)
Random O(k)

Basic greedy search evaluates n subsets of size 1, n − 1
subsets of size 2, . . . , and (n−k+1) subsets of size k, so it is

O(
∑k

i=1 m (n − i + 1) (i)). Wrapper greedy search applies
greedy search for each of n seed objects. Lookahead greedy
search exhaustively searches all subsets of size 2 (which is
O(C(n, 2) mk) = O(n2mk)), then uses those as the first
two seed objects and grows the rest of the set greedily. For
large n, the n2 term in the lookahead dominates the k2 term
in greedy search.
Exhaustive search evaluates C(n, k) (n choose k) sub-

sets. C(n, k) is O(nk) for n >> k. Top-K search computes
depth only (O(mk)) for n objects and maintains a sorted
list of length k with O(k) comparisons at each step. Ran-
dom search generates k random selections.

2Although we mention LA-Greedy and give its complexity
analysis, we did not evaluate this algorithm in the experiments pre-
sented in the paper. We plan to explore this method and other vari-
ants more thoroughly in future work.
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blocks-world data set, which includes three different tasks
with very different preferences. We show the results of ap-
plying five different algorithms to generate preferred subsets
from a collection of blocks: (1) the Basic-Greedy algorithm,
(2) the Wrapper-Greedy algorithm, (3) the Top-K algorithm,
(4) random subset selection, and (5) exhaustive search.
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color (represented as integers from 0–6), number-sides (an
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locations in a storage area; an integer from 0 to 100). We
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tinctly different tasks. Although these tasks (and the specific
values associated with each task) are artificial, they are intu-
itively reflective of the types of real-world preferences one
might wish to model in such a domain. The quality func-
tions qf are step functions, specified by the minimum and
maximum desired values.
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block sizes—but all fairly small; with varied colors; and
many different shapes. Location is less important, but the
blocks should be close together if possible. Thus, we have
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must be medium-sized for grasping, in many different colors
and shapes, and located close together.

Psize = < [10, 100], 1.0, 1.0 >
Pcolor = < [0, 6], 1.0, 0.8 >
Pnumber−sides = < [3, 20], 1.0, 0.8 >
Pbin = < [0, 100], 0.2, 0.4 >

Methodology. The same n blocks were used with all al-
gorithms, all values of k, and all preferences in a given trial.
The diversity weight α is set to 0.5 for all trials. The first set
of experiments (Figure 3) applied exhaustive search to small
problems to measure the true optimal value of the objective
function; we used this baseline to assess the performance of
the other four algorithms. In these experiments, n was set
to 50, and k was set to 2, 3, and 4. Exhaustive search is
impractical for larger problems, so we also ran a set of ex-
periments using only the first four methods (Basic-Greedy,
Wrapper-Greedy, Top-K, and Random) on 200 blocks, with
k = 5, 8, 11, and 14 (Figure 4).
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selects the top k blocks independently, according to the
depth function only.
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plexity of calculating the depth or diversity of a set of k ob-
jects is O(mk); therefore, the objective function Fdd is also
O(mk). We assume that n >> k.

Algorithm Complexity

Basic-Greedy O(mk2n)
Wrapper-Greedy O(mk2n2)
LA-Greedy O(mkn2)
Exhaustive O(mknk)
Top-K O(mk2n)
Random O(k)

Basic greedy search evaluates n subsets of size 1, n − 1
subsets of size 2, . . . , and (n−k+1) subsets of size k, so it is

O(
∑k

i=1 m (n− i + 1) (i)). Wrapper greedy search applies
greedy search for each of n seed objects. Lookahead greedy
search exhaustively searches all subsets of size 2 (which is
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large n, the n2 term in the lookahead dominates the k2 term
in greedy search.
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dom search generates k random selections.

2Although we mention LA-Greedy and give its complexity
analysis, we did not evaluate this algorithm in the experiments pre-
sented in the paper. We plan to explore this method and other vari-
ants more thoroughly in future work.
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with very different preferences. We show the results of ap-
plying five different algorithms to generate preferred subsets
from a collection of blocks: (1) the Basic-Greedy algorithm,
(2) the Wrapper-Greedy algorithm, (3) the Top-K algorithm,
(4) random subset selection, and (5) exhaustive search.

Blocks world data. Objects in the synthetic blocks do-
main have four attributes: size (a real value from 0 to 100),
color (represented as integers from 0–6), number-sides (an
integer value from 3 to 20), and bin (representing sequential
locations in a storage area; an integer from 0 to 100). We
have developed sample preference statements for three dis-
tinctly different tasks. Although these tasks (and the specific
values associated with each task) are artificial, they are intu-
itively reflective of the types of real-world preferences one
might wish to model in such a domain. The quality func-
tions qf are step functions, specified by the minimum and
maximum desired values.

Task 1: Construct a mosaic. This task requires various
block sizes—but all fairly small; with varied colors; and
many different shapes. Location is less important, but the
blocks should be close together if possible. Thus, we have
the following feature preferences < qf , df , wf >:

Psize = < [0, 25], 0.8, 1.0 >
Pcolor = < [0, 6], 0.75, 0.8 >
Pnumber−sides = < [3, 20], 1.0, 0.6 >
Pbin = < [0, 100], 0.1, 0.6 >
Task 2: Build a uniform tower. Here we want large,

similar-size, similar-color blocks, all the same shape and
with few sides. The location doesn’t matter (i.e., wbin = 0).

Psize = < [50, 100], 0.1, 1.0 >
Pcolor = < [0, 6], 0.0, 1.0 >
Pnumber−sides = < [4, 8], 0.0, 1.0 >
Task 3: Select blocks for a child. The blocks for this task

must be medium-sized for grasping, in many different colors
and shapes, and located close together.

Psize = < [10, 100], 1.0, 1.0 >
Pcolor = < [0, 6], 1.0, 0.8 >
Pnumber−sides = < [3, 20], 1.0, 0.8 >
Pbin = < [0, 100], 0.2, 0.4 >

Methodology. The same n blocks were used with all al-
gorithms, all values of k, and all preferences in a given trial.
The diversity weight α is set to 0.5 for all trials. The first set
of experiments (Figure 3) applied exhaustive search to small
problems to measure the true optimal value of the objective
function; we used this baseline to assess the performance of
the other four algorithms. In these experiments, n was set
to 50, and k was set to 2, 3, and 4. Exhaustive search is
impractical for larger problems, so we also ran a set of ex-
periments using only the first four methods (Basic-Greedy,
Wrapper-Greedy, Top-K, and Random) on 200 blocks, with
k = 5, 8, 11, and 14 (Figure 4).

qf df wf

Data Sets

1. User preferences are necessary for encoding different task goals and individual desires.
2. Feature-based preference statements can capture relevant preferences.
3. Both diversity and depth are important for finding the best subset.

Future Work:
- Investigate the use of CP-Nets to encode dependencies between features.
- Apply preferences to a large music data base, to generate DJ playlists.
- Learn preferences automatically from observing user behavior.

Experiment 1: Generate preferences for one blocksworld task, but 
evaluate against the goals of another task.

Conclusions: The best objective function values are obtained when the 
"right" preferences are used.  Therefore, the encoded preferences are 
qualitatively different; using the "wrong" preferences impacts performance.

Experiment 2: Given preferences and a set of items, evaluate the ability 
to select a good subset.  Compare Basic-Greedy, Wrapper-Greedy, Top-K 
(rank items independently and take the top K), and Random Selection.

Conclusion: Wrapper-Greedy consistently finds subsets of higher value 
than any other method.

Experiment 3:  Given existing user selections, can we infer their 
preferences?  After a user selects the top 5 of 25 images, we infer 
preferences based on those choices and apply them to a larger set of 100 
images, to select their optimal top 20.  We evaluate the quality of the 
retrieved subset by comparing its overlap with the images identified by the 
user as their true top 20 of 100.  We experimented with    values from 0.0 
(pure depth) to 1.0 (pure diversity).

Conclusion: The preferences enable better-than-random performance in 
finding the best top 20 images.  The best value was obtained for    = 0.9, 
suggesting that a combination of diversity and depth performs better than 
a sole emphasis on either one.

(Objective function values)
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Mosaic Tower Child

α

Generating Evaluating Preference
Preference Task 1 Task 2 Task 3

(mosaic) (tower) (child)

Task 1 0.9827 ± 0.0054 0.3054 ± 0.0306 0.9249 ± 0.0302
Task 2 0.7128 ± 0.0073 0.8654 ± 0.0175 0.6811 ± 0.0156
Task 3 0.8761 ± 0.0224 0.2646 ± 0.0212 0.9994 ± 0.0007
Random 0.7813 ± 0.0166 0.4051 ± 0.0382 0.8542 ± 0.0267

Table 1: Preference comparison across blocks world tasks, averaged over 20 trials (k = 14, n = 200,α = 0.5). Rows represent
different selected subsets; columns represent different preference evaluations.

other preferences. The first three rows represent the subsets
obtained when running Wrapper-Greedy with preferences
for Task 1 (mosaic), Task 2 (tower), and Task 3 (child). The
fourth row represents the subsets obtained by random selec-
tion. The columns give the average objective function for
the selected subsets, over 20 trials, when evaluated against
each of the three preferences. The best value for each col-
umn appears in boldface.

We find that the diagonal entries, where the generating
and evaluating preferences are identical, have the highest ob-
jective function values. This demonstrates that the Wrapper-
Greedy algorithm is doing a good job of tailoring the se-
lected subset to the specified preferences. In addition, the
preferences have significant impact: the subsets generated
according to other preferences do a poor job of satisfying
the evaluating preference. Further, we find that the block
subsets for one task, when measured by the other task prefer-
ences, are often worse than a randomly selected set of blocks
would be. For example, the subsets generated for Task 1,
when evaluated in the context of Task 2’s preference, yield
a worse objective function value (0.3054 on average) than
a randomly selected block subset (0.4051 on average). The
diagonal entries also have the smallest standard deviations—
that is, subsets selected for a given task have lower variabil-
ity with respect to that task’s preferences than do other sub-
sets. We conclude that preference specification can have a
large impact on the results, and specifying the right set of
preferences is critical.

Applying Preferences to Retrieve Larger Sets

The ability to encode and apply set-based preferences is par-
ticularly useful for large retrieval scenarios. For example,
a user may be willing to indicate preferences over a small
number of objects in exchange for getting back the top frac-
tion of objects from a much larger data set. We tested this
hypothesis by encoding user preferences for Mars rover im-
ages in DD-PREF and then applying them to retrieve a match-
ing subset from a larger group of images. We also explored
the impact of different values for the diversity weight, α.

We obtained a set of 100 grayscale images taken by a
Mars field test rover, on Earth. Each image is represented by
six features: the percent of the image composed of sky, rock,
rock layers, dark soil, light soil, and shadow. Figure 5(a)
shows one of the images and its feature values. For evalu-
ation purposes, each user identified, without examining the
image features, the best subset of 20 images, Stop20.

Inferring Preferences. First, we identified each user’s top
five ranked images, Stop5, from a separate task in which the
same users were asked to fully rank 25 randomly selected
images from the same set of 100 (Castaño et al. 2005). Our
goal was to see if preferences inferred from Stop5 could be
used to identify a subset similar to Stop20. We set the de-
sired diversity df to the diversity of Stop5. The quality func-
tion qf was defined as a soft constraint over the range of

values in Stop5 for feature f . Specifically, qf (xf
i ) = 1 if

xf
i ∈ [vf

min, vf
max] and (1−min(|vf

min−xf
i |, |xf

i −vf
max|)2)

otherwise. We set wf = 1.0 for all features. For example,
User 1’s preferences were:

Psky = < [33, 50], 0.94, 1.00 >
Prock = < [2, 16], 0.92, 1.00 >
Players = < [0, 2], 0.81, 1.00 >
Plightsoil = < [1, 6], 0.97, 1.00 >
Pdarksoil = < [35, 47], 0.99, 1.00 >
Pshadow = < [0, 1], 0.94, 1.00 >

In contrast, User 2 preferred images with less sky, more
rocks, and more light soil.

Methodology. For these experiments, we used the inferred
preference statements and the Wrapper-Greedy method to
select a subset of k = 20 items from the full data set of
n = 100 items. We evaluated the selected subsets in terms
of their overlap with the Stop20, varying alpha from 0 to 1 in
increments of 0.1. The overlap expected by random chance
is four images.

Discussion. Figures 5(b,c) show that Wrapper-Greedy
performed significantly better than random chance for each
user, despite their different preferences. The best result for
User 1 was obtained with a high diversity weight (α = 0.9).
Note that this result is better than a focus purely on depth
(α = 0.0, equivalent to a Top-K approach) or diversity
(α = 1.0). In contrast, the best result for User 2 was ob-
tained with a focus purely on depth.
We observe that although the mean overlap for each user’s

best results never exceeds 8 (of a possible 20), the objective
function values for these subsets are very high (0.999 in all
cases). We found that the true Stop20 was actually valued
lower (0.995 for User 1 and 0.994 for User 2), which sug-
gests that (a) the users may not have been consistent in their
selection of Stop5 and Stop20, and/or (b) the features cannot
adequately capture what the users value in the images. For
example, User 1’s preferences specify a range of 33-50%
for the sky feature, but in this user’s Stop20, the sky feature
ranges from 1-54%. Similarly, the desired (based on Stop5)

Averaged over 20 trials

α


